User Tools

Site Tools


wiki:aiki probabilities

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

wiki:aiki probabilities [2017/04/09 20:49]
caleymccready
wiki:aiki probabilities [2021/01/10 00:09] (current)
caleymccready
Line 4: Line 4:
 The following table conveys the statistics for rolling the Cleromancer'​s [[cleromancer#​Aiki]] ability. Aiki is calculated in the following manner: The following table conveys the statistics for rolling the Cleromancer'​s [[cleromancer#​Aiki]] ability. Aiki is calculated in the following manner:
  
->The attacker rolls only the dice portion of their offensive formula, dropping all other bonuses. For each successful ​hit, the defender must match the die face in order to successfully defend against the attack. A match can be made by rolling the same face, or by rolling the opposite face (1|6, 2|5, 3|4). If the attacker rolls no successful hits, the defender wins+>The attacker rolls only the dice portion of their offensive formula, dropping all other bonuses. For each successful ​rolled die, the defender must match the die face in order to successfully defend against the attack. A match can be made by rolling the same face, or by rolling the opposite face (1|6, 2|5, 3|4). If the attacker rolls no successful hits, the defender wins
  
 The chart below dictates the defender'​s chance of successfully blocking an attack by using Aiki The chart below dictates the defender'​s chance of successfully blocking an attack by using Aiki
  
-|  ^  Defender has\\ 6d6  ^  7d6  ^  8d6  ^  9d6  ^  10d6  ^  11d6  ^  12d6  ^ +|  ^  Defender has\\ 6d6  ^  ​\\ 7d6  ^  ​\\ 8d6  ^  ​\\ 9d6  ^  ​\\ 10d6  ^  ​\\ 11d6  ^  ​\\ 12d6  ^ 
 ^  Attacker has\\ 6d6  |  57%  |  66%  |  75%  |  81%  |  86%  |  89%  |  92%  | ^  Attacker has\\ 6d6  |  57%  |  66%  |  75%  |  81%  |  86%  |  89%  |  92%  |
-^  7d6  |  |  |  |  |  |  |  | +^  7d6  |  ​48% ​ ​| ​ ​59% ​ ​| ​ ​68% ​ ​| ​ ​75% ​ ​| ​ ​81% ​ ​| ​ ​85% ​ ​| ​ ​89% ​ | 
-^  8d6  |  |  |  |  |  |  |  | +^  8d6  |  ​39% ​ ​| ​ ​51% ​ ​| ​ ​60% ​ ​| ​ ​69% ​ ​| ​ ​75% ​ ​| ​ ​81% ​ ​| ​ ​85% ​ | 
-^  9d6  |  |  |  |  |  |  |  | +^  9d6  |  ​32% ​ ​| ​ ​43% ​ ​| ​ ​53% ​ ​| ​ ​63% ​ ​| ​ ​69% ​ ​| ​ ​76% ​ ​| ​ ​82% ​ | 
-^  10d6  |  |  |  |  |  |  |  | +^  10d6  |  ​25% ​ ​| ​ ​35% ​ ​| ​ ​45% ​ ​| ​ ​56% ​ ​| ​ ​63% ​ ​| ​ ​71% ​ ​| ​ ​77% ​ | 
-^  11d6  |  |  |  |  |  |  |  | +^  11d6  |  ​19% ​ ​| ​ ​29% ​ ​| ​ ​38% ​ ​| ​ ​48% ​ ​| ​ ​58% ​ ​| ​ ​65% ​ ​| ​ ​72% ​ | 
-^  12d6  |  |  |  |  |  |  |  | +^  12d6  |  ​14% ​ ​| ​ ​23% ​ ​| ​ ​32% ​ ​| ​ ​42% ​ ​| ​ ​51% ​ ​| ​ ​60% ​ ​| ​ ​68% ​ |
- +
-**Note**: These numbers were calculated by running 12,000 simulations per matchup, and are therefore only and approximation. To stress this point, the percentages have been rounded to the nearest whole number+
  
  
 +\\
 **Example** **Example**
  
-The attacker has an offensive formula of 7d6+5. The defending Cleromancer is using Aiki, which has not been improved and therefore has a defensive formula of 6d6. The attacker rolls 7d6 and gets [6,​6,​4,​3,​3,​2,​1]. This is three successful ​"​hits"​ from the [6,6,4] rolled. The cleromancer defensively rolls 6d6 and gets [6,​5,​3,​2,​2,​1]. The cleromancer is successful in neutralizing the attack with the following pairs: (6,6) (6,1) (4,3)+The attacker has an offensive formula of 7d6+5. The defending Cleromancer is using Aiki, which has not been improved and therefore has a defensive formula of 6d6. The attacker rolls 7d6 and gets [6,​6,​4,​3,​3,​2,​1], which is successful ​die that must be matched (6,6,4). The cleromancer defensively rolls 6d6 and gets [6,​5,​3,​2,​2,​1]. The cleromancer is successful in neutralizing the attack with the following pairs: (6-6) (6-1) (4-3)
  
 Statistically in a matchup where the attacker has 7d6 and the cleromancer has 6d6, the odds of the cleromancer defending the attack are 48%, from the table above Statistically in a matchup where the attacker has 7d6 and the cleromancer has 6d6, the odds of the cleromancer defending the attack are 48%, from the table above
wiki/aiki probabilities.1491785349.txt.gz · Last modified: 2017/04/09 20:49 by caleymccready